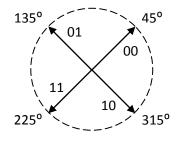
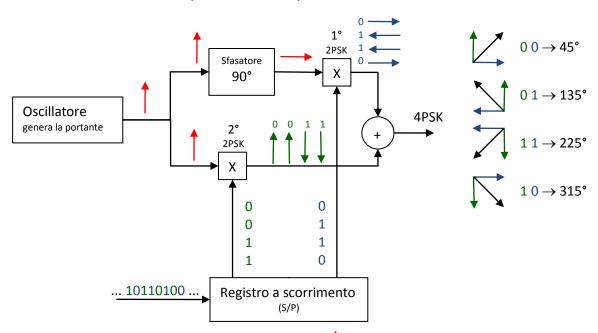

MODULATORI 4PSK DI TIPO "A" E "B"



Il modulatore di tipo "A", in funzione del DI-BIT (Q_1-Q_2) in ingresso, da in uscita la portante sfasata di 0°, 90°, 180° e 270°

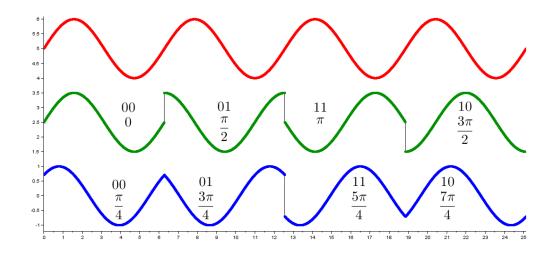
Q_1	Q ₂	"A"	"B"
0	0	0°	45°
0	1	90°	135°
1	1	180°	225°
1	0	270°	315°


MOULATORE
TIPO "B"

Q₁ Q₂

Il modulatore di tipo "B", in funzione del DI-BIT (Q₁- Q₂) in ingresso, da in uscita la portante sfasata di 45°, 135°, 225° e 315°


MODULATORE 4PSK - TIPO B (schema a blocchi)


Lo sfasatore anticipa la portante di 90° gradi: da così (\uparrow) a così (\rightarrow) I due modulatori 2PSK sfasano la portante: bit $0 \Rightarrow 0^{\circ}$ - bit $1 \Rightarrow 180^{\circ}$ Nel 1° modulatore il bit $0 \Rightarrow$ da (\rightarrow) a (\rightarrow) ed il bit $1 \Rightarrow$ da (\rightarrow) a (\leftarrow) Nel 2° modulatore il bit $0 \Rightarrow$ da (\uparrow) a (\uparrow) ed il bit $1 \Rightarrow$ da (\uparrow) a (\downarrow) Il sommatore esegue la somma vettoriale delle due componenti.

Aggiungendo uno sfasatore che anticipa di 14° la portante si ottiene una modulazione 2PSK di tipo A

MODULATORE 4PSK - TIPO A (schema a blocchi)

<u>Andamento temporale</u> della portante e della modulata 4PSK di tipo "A" e di tipo "B" in corrispondenza degli ingressi: 00 01 11 10

MODULATORE 8PSK

Il modulatore 8PSK somma l'uscita di 2 modulatori 4PSK, uno di tipo "A" ed uno di tipo "B".

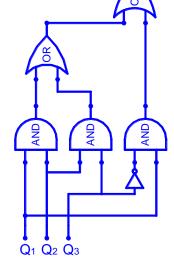
Per ottenere gli 8 diversi sfasamenti servono $(2^3 = 8)$ 3 bit (Q_1, Q_2, Q_3)

Per comandare i 2 modulatori 4PSK servono 2+2=4 ingressi (A,B,C,D): la logica combinatoria provvede ad associare ai valori di Q_1 Q_2 Q_3 , gli opportuni valori di ABCD.

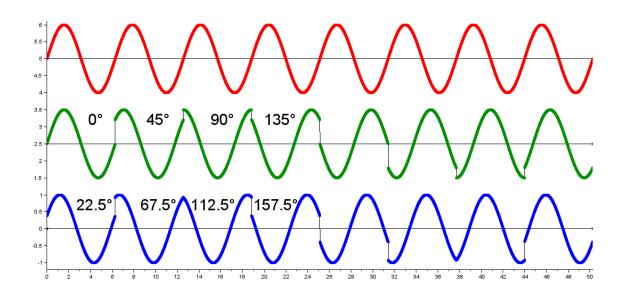
Progetto rete combinatoria:

Q_1	Q ₂	Q ₃	Α	
0	0	1	0	
0	0	0	0	
0	1	0	0	
0	1	1	1	$\bar{Q}_1Q_2Q_3$
1	1	1	1	$Q_1Q_2Q_3$
1	1	0	1	$Q_1Q_2ar{Q}_3$
1	0	0	1	$Q_1 \bar{Q}_2 \bar{Q}_3$
1	0	1	0	

per ottenere A da Q_1 , Q_2 e Q_3 , considerando solo le combinazioni che danno A = 1 nella tabella della verità qui a fianco, scrivo la seguente equazione combinatoria


 $A = \bar{Q}_1 Q_2 Q_3 + Q_1 Q_2 Q_3 + Q_1 Q_2 \bar{Q}_3 + Q_1 \bar{Q}_2 \bar{Q}_3$

e la minimizzo


$$A = Q_2 Q_3 + Q_1 Q_2 + Q_1 \bar{Q}_3$$

$$\begin{split} B &= \bar{Q}_1 \bar{Q}_2 \bar{Q}_3 + \bar{Q}_1 Q_2 \bar{Q}_3 + \bar{Q}_1 Q_2 Q_3 + Q_1 Q_2 Q_3 = \bar{Q}_1 \bar{Q}_3 + \bar{Q}_1 Q_2 + Q_2 Q_3 \\ C &= Q_1 Q_2 Q_3 + Q_1 Q_2 \bar{Q}_3 + Q_1 \bar{Q}_2 \bar{Q}_3 + Q_1 \bar{Q}_2 Q_3 = Q_1 Q_2 + Q_1 \bar{Q}_3 + Q_1 \bar{Q}_2 \\ D &= \bar{Q}_1 Q_2 \bar{Q}_3 + \bar{Q}_1 Q_2 Q_3 + Q_1 Q_2 Q_3 + Q_1 Q_2 \bar{Q}_3 = \bar{Q}_1 Q_2 + Q_2 Q_3 + Q_1 Q_2 Q_3 + Q_1 Q_2 \bar{Q}_3 = \bar{Q}_1 Q_2 + Q_2 Q_3 + Q_1 Q_2 \bar{Q}_3 + \bar{Q}_1 \bar{Q}_2 \bar{Q}_3$$

ANDAMENTO TEMPORALE

