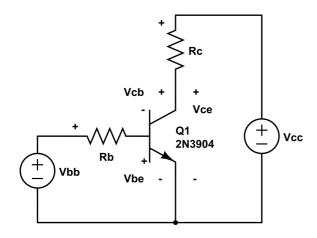

COLLETTORE BASE EMETTITORE

$$i_E = i_B + i_C$$

$$i_C = \beta_F \cdot i_B$$

Guadagno statico di corrente ad emettitore comune

$$10 \le \beta_F \le 1000$$


$$i_E = \frac{i_C}{\beta_F} + i_C = \left(\frac{1 + \beta_F}{\beta_F}\right) i_C$$

$$i_C = \left(\frac{\beta_F}{1 + \beta_F}\right) i_E = \alpha_F i_E$$

$$0.9 \le \alpha_F \le 0.999$$

Guadagno statico di corrente a base comune

Analisi in continua

$$V_{BB} - R_B I_B - V_{BE} = 0$$

maglia di ingresso

$$I_B = \frac{V_{BB} - V_{BE}}{R_B}$$
 $V_{BE} = 0.7V$; $V_{BB} e R_C noti$

$$V_{BE} = 0.7V$$

$$V_{BB}$$
 e R_C noti

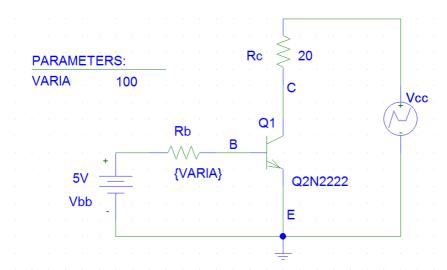
$$I_C = \beta \cdot I_B$$

β noto

$$I_E = \alpha \cdot I_C$$

 α noto

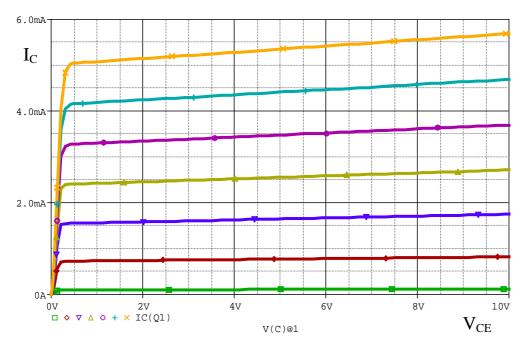
$$V_{CC} - R_C I_C - V_{CE} = 0$$

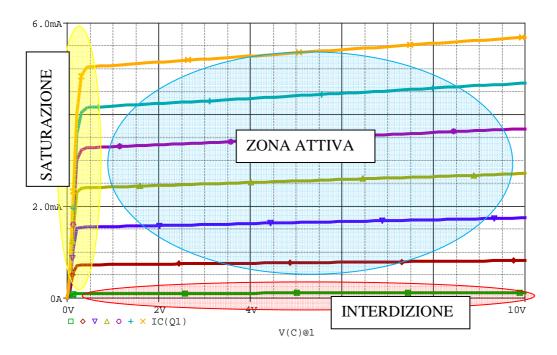

maglia di uscita

$$\boldsymbol{V_{CE}} = V_{CC} - R_C I_C$$

 V_{CC} noto

$$V_{CB} = V_{CE} - V_{BE}$$

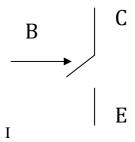

CARATTERISTICHE DI COLLETTORE



Nel circuito di ingresso, variando R_B si possono avere diversi valori di I_B , in tabella sono stati calcolati i valori di R_C che consentono di ottenere incrementi costanti di I_B ($\cong 0$ A; 5 μ A; 10 μ A; 15 μ A, ..)

Vbb	Rc [k]	lb [μ]
5	5000	0,86
5	860	5
5	430	10
5	286,67	15
5	215	20
5	172	25
5	143,33	30

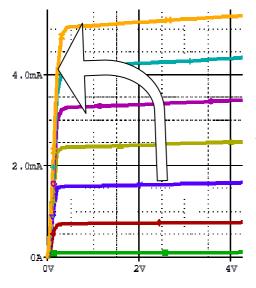
Per ogni valore di I_B scelto, variando V_{CC} da 0V a 10V si ottengono i seguenti andamenti per I_C , graficati rispetto a V_{CE} :



ZONA ATTIVA

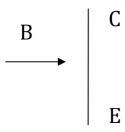
Parte centrale delle caratteristiche di collettore. In questa zona è valida la relazione: $I_C = \beta \cdot I_B$

ZONA DI INTERDIZIONE


 I_B =0; la giunzione BE è polarizzata inversamente: I_C =0 Il BJT si comporta come un interruttore aperto

ZONA DI SATURAZIONE

Partendo da un punto in zona attiva, se si fa crescere IB


$$I_{B} \uparrow \rightarrow I_{C} = \beta \cdot I_{B} \uparrow \rightarrow V_{Rc} = R_{C}I_{C} \uparrow \rightarrow V_{CE} = V_{CC} - V_{Rc} \downarrow$$

Quindi al crescere di $I_B\ V_{CE}$ cala e si passa in zona di saturazione.

In zona di saturazione se I_B aumenta I_C rimane praticamente costante quindi non è valida la relazione $I_C = \beta \cdot I_B$

Inoltre $V_{\text{CE}}\cong 0$ e I_{C} non dipende da V_{BE} , quindi il BJT si comporta come un corto circuito

